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ON THE ASYMPTOTIC ISOPERIMETRIC
CONSTANTS FOR RIEMANN SURFACES AND

GRAPHS

ROBERT BROOKS & ANDRZEJ ZUK

Abstract
We study the behavior of the Cheeger isoperimetric constant on infinite fam-
ilies of graphs and Riemann surfaces, and its relationship to the first eigen-
value λ1 of the Laplacian. We adapt probabilistic arguments of Bollobás
to the setting of Riemann surfaces, and then show that Cheeger constants
of the modular surfaces are uniformly bounded from above away from the
maximum value. We extend this result to the class of Ramanujan surfaces,
defined below.

1. Introduction

To a manifold or a graph one can associate two numbers which carry
interesting geometric and analytic information, namely the Cheeger
isoperimetric constant and the bottom of the L2 spectrum of the Laplace
operator. Their study has a long history, and many results concerning
relations between these two quantities have been obtained.

For a connected regular graph of degree k, let ∆ be the discrete
Laplace operator, acting on L2(X) by the formula

∆f(x) = f(x)− 1
k

∑
y∼x

f(y),

where f ∈ L2(X), x is a vertex of X and “y ∼ x” means that y and x are
connected by an edge. The operator ∆ is self-adjoint and nonnegative.
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For an infinite graphX, let λ0(X) denote the bottom of the L2 spectrum
of ∆. For a finite graph X, let λ1(X) denote the first nonzero eigenvalue
of ∆.

The asymptotic behavior of the first nonzero eigenvalue λ1 of the
Laplace operator on finite graphs has been studied extensively. In par-
ticular, the theorem of Alon-Boppana states:

Proposition 1.1 ([1], [15]). Let X be a finite k-regular graph,
where k is fixed. Then

λ1(X) ≤ 1− 2
√
k − 1
k

+ ε(|X|),

where ε(|X|) → 0 as |X| → ∞.

We introduce here a convention which will be in force throughout
this paper: the function ε(x1, . . . , xk) will denote a function of the vari-
ables x1, . . . , xk which tends to 0 as the variables tend to infinity.

The number 1− 2
√

k−1
k is the bottom λ0(Tk) of the L2 spectrum of

the Laplace operator on the regular tree Tk of degree k, which is the
universal cover of the graph X.

Results of Lubotzky, Phillips, and Sarnak [15] and Margulis [17]
show that for infinitely many values of k, the bound 1− 2

√
k−1
k + ε(|X|)

in Proposition 1.1 is optimal.

We begin this paper by studying the asymptotic behavior of the
Cheeger isoperimetric constant of a k-regular graph.

Let X be a finite graph of degree k. For a finite subset of vertices
U ⊂ X we define its boundary ∂U as the set of edges with one extremity
in U and the other in X \ U . We define the Cheeger isoperimetric
constant h(X) as

h(X) = min
{ |∂U |

|U | ;U ⊂ X and 1 ≤ |U | ≤ 1
2
|X|
}
.

There are a number of relations between the Cheeger constant h(X)
and the eigenvalues λ0(X) and λ1(X) of ∆ acting on L2(X), see Propo-
sitions 4.1 and 4.2 below.

Extending a result of Bollobás [3], we show that the asymptotic
behavior of the isoperimetric constant of a finite k-regular graph behaves
differently than the first eigenvalue of the Laplacian with respect to
universal covering (compare [2]).
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Let inj(X) denote the injectivity radius of the graph X, i.e., the
maximal number r such that in every ball of radius r in X there is
no cycle. The girth is related to the injectivity radius by the formula
inj(X) =

⌈
girth(X)

2

⌉
.

Theorem 3.1. Let X be a finite k-regular graph. Then

h(X) ≤ k − 2
2

+ ε(inj(X)) =
h(Tk)
2

+ ε(inj(X)).

A result stronger than Theorem 3.1 is contained in [2]. Indeed, in
[2] the assumption on injectivity radius is not needed, and one obtains
a constant of the form k

2 − c
√
k, where c does not depend on k. We

remark that
(k/2)− c

√
k

(1/2)(h(Tk))
→ 1 as k → ∞.

We present Theorem 3.1 with the weaker assumption and weaker
conclusion, as the dependence on injectivity radius and universal cover-
ing will reappear in the geometric setting, Theorem 5.1 below.

We now turn to the problem of generalizing Theorem 3.1 to the
setting of manifolds, and in particular to the case of Riemann surfaces.

For a Riemannian manifoldMn of dimension n we define its Cheeger
isoperimetric constant h(Mn) as follows

h(Mn) = inf
A

{
voln−1(∂A)
voln(A)

}
,

where A runs over subdomains ofMn of volume less than (1/2)vol(Mn),
and where voln−1(∂A) and voln(A) are the measures with respect to the
Riemannian metric.

It is well-known that for the hyperbolic plane H
2 one has

h(H2) = 1.

Let inj(M) denote the injectivity radius ofM . WhenM has negative
curvature, then inj(M) is the largest number r such that every ball of
radius r in M is isometric to its lift in the universal cover M̃ of M .
Thus, inj(M) is in this case equal to half the length of the shortest
closed geodesic on M .
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We show in Theorem 5.1 below that if S is a Riemann surface of
genus > 1, endowed with its hyperbolic metric, then, modulo some
technical assumptions that will be explained there, we have

h(S) ≤ (1/2) + ε(inj(S)) = (1/2)[h(H2) + ε(inj(S))].

We then show the following theorem in Section 6:

Theorem 6.2. There is a constant C < 1/2 with the following
property:

Let Sk be the modular surface

Sk = H
2/Γk,

where Γk is the subgroup of PSL(2,Z) given by

Γk =
{(

a b
c d

)
:
(
a b
c d

)
≡
(

1 0
0 1

)
(mod k)

}
.

Then
h(Sk) ≤ C

for k sufficiently large.

Our argument gives the explicit bound

C ≤ .4402 . . . .

The modular surfaces Sk were studied by Selberg [20], who proved
that the first eigenvalue λ1(Sk) satisfies

λ1(Sk) ≥ 3/16.

He also conjectured that one had the stronger bound

λ1(Sk) ≥ 1/4,

where 1/4 is the bottom of the spectrum of H
2. In light of Theorem 5.1,

one can think of Theorem 6.2 as saying that the analogue of the con-
jecture of Selberg in the context of the Cheeger constant is false.

A common theme in the proofs of Theorems 3.1 and 5.1 is the use of
probabilistic arguments originally introduced by Bollobás in [3]. Basic
facts from probability theory which we use are recalled in Section 2.
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In Section 7, we extend Theorem 6.2 to surfaces built out of the Ra-
manujan graphs of [15]. The construction describing how these surfaces
are built from k-regular graphs is sketched in Section 7. We then show:

Theorem 7.1. There exists a constant C < 1/2 such that, for all
p and for all q sufficiently large, depending on p, we have that

h(Sp,q
O ) ≤ C,

where Sp,q
O is a surface constructed from the Ramanujan graph Xp,q.

Our argument produces a bound for C of

C ≤ .467177 . . . .

We remark that in contrast to the graph-theoretic results of [2],
we have that this constant stays away from 1/2 independent of the
regularity k of the associated graph.

Acknowledgements. The first author would like to thank the
École Normale Superieure of Lyon and the University of Chicago for
their hospitality while much of this research was carried out.

The second author would like to thank the Technion for its hospi-
tality during a visit where this research was begun.

After a preliminary version of this paper was completed, Noga Alon
informed us of his work [2]. In addition to proving results stronger than
the graph theoretic results contained in this paper, he also made use of
very similar techniques. We would like to thank him for bringing our
attention to [2].

2. Probability

In our considerations below, we make use of some basic, well-known
facts from probability theory. Because they are usually not used in the
geometric context, we will recall them.

Let C
n
2
n denote the set of all subsets of {1, . . . , n} of size n

2 .

Lemma 2.1. Let r < R be fixed positive numbers. Let r1, . . . , rn
be such that r ≤ ri ≤ R. Then for any ε > 0

#
{
I ∈ C

n
2
n ; (1

2 − ε)
∑n

i=1 ri ≤
∑

i∈I ri ≤ (1
2 + ε)

∑n
i=1 ri

}
#C

n
2
n

≥ 1− F (r,R, ε, n),
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where F (r,R, ε, n) tends to 0 when n tends to infinity.

Proof. Let G
n
2
n denote these subsets I of C

n
2
n for which we have

(
1
2
− ε

) n∑
i=1

rn ≤
∑
i∈I

ri ≤
(
1
2
+ ε

) n∑
i=1

ri.(1)

We want to prove that

#G
n
2
n

#C
n
2
n

≥ 1− F (r,R, ε, n)

where F (r,R, ε, n) tends to 0 when n tends to infinity.
Let us consider two numbers ri and rj from the sequence r1, . . . , rn

such that ri ≤ rj . For any δ > 0 let us consider instead of ri, rj the
numbers r′i = ri − δ and r′j = rj + δ. The sum of the numbers did

not change. Let G′ n
2
n denote these subsets I of C

n
2
n which satisfy (1)

for a new sequence of r’s where ri, rj are replaced by r′i, r
′
j respectively.

The cardinality of G′ n
2
n can only decrease with respect to the cardinality

of G
n
2
n . Indeed, whenever we have I ⊂ G

n
2
n also its complement I ′ in

{1, . . . , n} belongs to G
n
2
n . As ri ≤ rj we will have more I ′ ⊂ G

′n
2

n for
which ∑

i∈I′
ri <

(
1
2
− ε

) n∑
i=1

ri

or ∑
i∈I′

ri >

(
1
2
+ ε

) n∑
i=1

ri

then I ⊂ G
n
2
n with the same property.

After applying this procedure several times we obtain the following
situation: r1, . . . , rk = r and rk+1, . . . , rn = R or r1, . . . , rk = r and
rk+1, . . . , rn−1 = R and r1, . . . , rk = r and rk+1, . . . , rn−1 = R and
rn = c, where r < c < R and we need to prove Lemma 2.1 for such a
situation. But in this case the statement of Lemma 2.1 is a consequence
of the Law of Large Numbers. q.e.d.
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3. Asymptotic isoperimetric constants for graphs

A graph X is said to be k-regular if every vertex meets exactly k
edges.

Let X be a finite k-regular graph. For a finite subset of vertices
U ⊂ X we define its boundary ∂U as the set of edges with one extremity
in U and another one in X \ U . We define the Cheeger isoperimetric
constant h(X) as

h(X) = min
{ |∂U |

|U | ;U ⊂ X and 1 ≤ |U | ≤ 1
2
|X|
}
.

Proposition 3.1 (Bollobás [3]). Let X be a finite k-regular graph.
Then

h(X) ≤ k

2
+ ε(|X|).

One can also define the isoperimetric constant in the same way as
before for graphs which are not of constant degree. Then one can prove

Proposition 3.2. Let X be a connected graph with E edges and n
vertices. Then there exists a subset A0 such that |A0| = [n/2] and

|∂A0|
|A0| ≤ E

n+ 1
(n− 1)n

.

Proof. Let A be a random subset of X, such that |A| = [n2 ]. Let
us compute the expected number of edges of X with one end in A and
another one in Ac. If X had just one edge then the expected number
would be equal to

|A|(n− |A|)(
n
2

) .

As X has E edges, the expected number is equal

E
|A|(n− |A|)(

n
2

) .

Thus there exists A0 ⊂ X of cardinality [n2 ] such that

|∂A0| ≤ E
|A0|(n− |A0|)(

n
2

) .
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This gives:

|∂A0|
|A0| ≤ E

(n− |A0|)(
n
2

) = E
(n− [n2 ])(

n
2

) ≤ E
(n+ 1)
(n− 1)n

.

This ends the proof of Proposition 3.2. q.e.d.

Corollary 3.1. Let k be fixed. Let X be a connected graph with
k|X|

2 edges. Then

h(X) ≤ k

2
+ ε(|X|).

If the graph X is infinite, we define the Cheeger isoperimetric con-
stant h(X) as

h(X) = min
U

{ |∂U |
|U |

}
,

where U ranges over finite subsets of X.

We will say that a sequence of graphs Xi converges to a connected
graphX, i.e., Xi →i→∞ X, if there exists a vertex x ∈ X and a sequence
of natural numbers ri ∈ N such that ri →i→∞ ∞ and the balls B(xi, ri)
and B(x, ri) are isometric. The limit graph is not unique and may
depend on the choice of the sequence xi.

Proposition 3.3. Let Xi be a sequence of finite or infinite, con-
nected graphs, such that Xi →i→+∞ X where the graph X is infinite
and connected. Then

lim sup
i→+∞

h(Xi) ≤ h(X).

Proof. This is clear from the definition of convergence. q.e.d.

Let Tk be the regular tree of degree k. It is well-known that

h(Tk) = k − 2.

For any regular infinite graph X of degree k we then have that

h(X) ≤ h(Tk) = k − 2.

Let inj(X) denote the injectivity radius of the graph X.
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Theorem 3.1. Let X be a finite k-regular graph.
Then

h(X) ≤ k − 2
2

+ ε(inj(X)) =
h(Tk)
2

+ ε(inj(X)).

Proof. First of all, we need the following

Lemma 3.1. Let A be a finite connected subset of a regular tree Tk

of degree k. Then

k − 2 ≤ |∂A|
|A| ≤ ε(diam(A)).

Proof. Because the isoperimetric constant of a regular tree of degree
k is k − 2, we have |∂A|

|A| ≥ k − 2.
If A is an interval of diam(A), we have that

|A| = diam(A) + 1

while
|∂A| = 2(k − 1) + (diam(A))(k − 2),

so that

|∂A|
|A| = (k − 2) +

2
diam(|A|) + 1

= k − 2 + ε(diam(A)).

If A is not an interval, then there exists some vertex v whose bound-
ary contains k − 1 edges. Removing this vertex and the edge joining
it to the rest of A decreases the edge set by k − 2 and decreases the
vertex set by 1, and doesn’t change the diameter. Since |∂A|

|A| ≥ k − 2,
this process increases the isoperimetric ratio. Continuing this process
until we get an interval establishes the lemma. q.e.d.

We remark that the lower bound of Lemma 3.1 is not sharp. Indeed,
the argument shows that the infimum is attained by the “ball of diam-
eter diam(A), which for diam(A) even is the ball of radius diam(A)

2 , and
for diam(A) odd is the union of the two balls of radius diam(A)−1

2 about
the two endpoints of an edge.

We now return to the proof of Theorem 3.1.

Let R be the injectivity radius of the graph X. In the graph X,
let us consider a maximal set of vertices v1, . . . , vn such that any two
vertices are at distance at least R/10.
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Let us consider disjoint subsets C1, . . . , Cn of X with the property
that if v ∈ Ci, then

dist(v, vj) ≥ dist(v, vi) for all j.

We will need some simple properties of the sets Ci:

Lemma 3.2. The sets Ci have the following properties:

(i) R
10 ≤ diam(Ci) ≤ R

5 .

(ii) Each Ci is a connected subgraph of Tk.

(iii) For i �= j, there exists at most one edge conecting a vertex of Ci

with a vertex of Cj.

(iv) The number n of the Ci’s is bounded below by a function of R
which goes to infinity as R → ∞.

We now consider the graph V which has one vertex vi for each Ci,
and where vi is joined by an edge to vj if there is an edge joining a
vertex of Ci to a vertex of Cj .

Because the subset A was chosen at random, by Lemma 2.1 we can
assume, by taking if necessary instead of A its complement, that

1
2
− ε(n) ≤

|Ci1 |+ · · ·+ |Ci n
2
|

|C1|+ · · ·+ |Cn| ≤ 1
2
,

where ε(n) →n→∞ 0. For a subset C ⊂ Xi such that

C = Ci1 ∪ · · · ∪ Ci n
2

we have |C| ≤ |Xi|/2 and

|∂C| = |∂A|.

Because C1, . . . , Cn are subsets of Tk and we have by Lemma 3.1
that

|∂Ci| ≤ (k − 2 + ε(R))|Ci|
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where ε(R) tends to 0 when R tends to infinity. Thus

|∂C|
|C| =

|∂A|
|Ci1 |+ · · ·+ |Ci n

2
|

≤ E|A|(n+ 2)
(n− 1)n(|Ci1 |+ · · ·+ |Ci n

2
|)

=
1
4

(
n+ 2
n− 1

)
(k − 2 + ε(R))

|C1|+ · · ·+ |Cn|
|Ci1 |+ · · ·+ |Ci n

2
|

≤ 1
4
n+ 2
n− 1

(k − 2 + ε(R))
1

1
2 − ε(n)

→ k − 2
2

.

This ends the proof of Theorem 3.1. q.e.d.

We close this section with a collection of examples of graphs whose
Cheeger constant can be shown to be large by elementary methods. We
omit the proofs, except for a few comments.

Example 3.1. Let Xk be the complete graph of degree k, so that
|Xk| = k + 1. Then

h(Xk) = k + 1−
[
k + 1
2

]
≥ k + 1

2
.

Similarly, if Yk is the complete bipartite graph of degree k, so that
|Yk| = 2k, then

h(Yk) =
k

2
.

Example 3.2. For q a prime or prime power, we define the inci-
dence graph Pq of the projective plane P

2(Fq) as follows: the vertices of
Pq are the points and lines of P

2(Fq), and a point vertex is joined to a
line vertex if the corresponding point lies on the corresponding line.

The graph Pq has degree q + 1 and has 2(q2 + q + 1) vertices.
Then

h(Pq) ≥ q + 1
3

.

Example 3.3. For q a prime, let πq be the q-th Platonic graph of [7].
This is the graph whose vertices are the pairs (a, b) in Z/p×Z/p− (0.0)
with (a, b) identified with (−a,−b), and where (a, b) is joined to (c, d)
by an edge if and only if

det
(
a b
c d

)
≡ ±1 (mod q).
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πq is q-regular on q2−1
2 vertices. Then

h(πq) ≥ q2 − 2q + 5
4(q − 1)

.

The common idea in the above examples is that, given two vertices,
one can describe readily the short paths joining them. If the vertices
are sent to two sets, then one edge for each short path must be deleted,
and one may control how often the same edge is counted.

4. Relation between the isoperimetric constant and λ1

In this section, we study the relationship between the isoperimetric
constant h(X) of a graph X and the eigenvalues λ0(X) and λ1(X) of
∆ acting on L2(X). This is the content of Propositions 4.1 and 4.2.
P. Doyle and K. Fujiwara told us that they were aware of Proposi-
tion 4.2.

Proposition 4.1. For a finite graph X of degree k one has

h(X) ≥ 1
2
k · λ1(X).

For an infinite graph X of degree k one has

h(X) ≥ k · λ0(X).

This is proved by building test functions out of a division of X by a
set realizing h.

It is known that:

1. (Kesten [13]). For a regular tree Tk of degree k,

λ0(Tk) = 1− 2
√
k − 1
k

.

2. For the complete graph Xk of degree k one has

λ1(Xk) = 1 +
1
k
,

while for the complete bipartite graph Yk of degree k, we have

λ1(Yk) = 1− 1
k
.
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3. (Feit-Higman [11]). For the incidence graph Pq of a finite projec-
tive plane P

2(Fq) one has

λ1(Pq) = 1−
√
q

q + 1
.

4. The Platonic graph π3 is the complete graph of degree 3, and for
q ≥ 4 we have

λ1(πq) = 1− 1√
q
.

This gives the following estimates for the isoperimetric constants:

1. h(Tk) ≥ k − 2
√
k − 1.

2. h(Xk) ≥ k+1
2 and h(Yk) ≥ k−1

2 .

3. h(Pq) ≥ q+1−√
q

2 .

4. h(πq) ≥ q−√
q

2 .

Of these inequalities, the first two are weaker than the value found
by elementary arguments in Section 3, while for the remaining examples,
the bound found here is sharper.

Proposition 4.2. For a finite graph X of degree k one has

h(X) ≤ k
√
λ1(2− λ1).

For an infinite graph X of degree k one has

h(X) ≤ k
√
λ0(2− λ0).

A proof in the case of finite graphs can be found in [10]. The proof
for infinite graphs is similar.

Remarks. For a regular tree Tk of degree k we have h(Tk) = k−2.
Proposition 4.2 gives in this case the lower bound

λ0(Tk) ≥ 1− 2
√
k − 1
k

,

which is the exact value of λ0(Tk).
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5. The Cheeger constant of a Riemann surface

In this section, S will denote a compact Riemann surface of genus
> 1, endowed with its metric of constant curvature −1.

We wish to find an upper bound for the Cheeger constant h(S) of S,
by mimicking the probabilistic arguments we used in the context of k-
regular graphs. That is, we will divide S into smaller plaques, and then
choose a division of S into two pieces A and B by randomly assigning
each plaque to one of these two pieces.

If D is a domain in S, let us denote by h∗(D) the isoperimetric ratio

h∗(D) =
length(∂D)
vol(D)

.

We denote this ratio by h∗ to distinguish it from the Cheeger con-
stant h(D). h(D) and h∗(D) are related by

h(D) = inf
D′ h

∗(D′),

where D′ ranges over subdomains of D.

A fundamental problem not encountered in the graph-theoretic prob-
lem is that the analogue of Lemma 3.1 is no longer true — that is, it
is no longer true that a simply-connected domain D in the hyperbolic
plane satisfies an upper bound for the ratio h∗(D) which is close to
the isoperimetric constant of the hyperbolic plane. It is clear that if D
contains a ball B(r) of radius r, then

h(D) ≤ h(B(r)) = h∗(B(r)),

but h∗(D) may be badly behaved for a number of reasons.
In the first place, the boundary of D may be very irregular, and

hence long, without greatly affecting the enclosed area. Secondly, even
if the boundary of D is very regular, for instance piecewise geodesic,
the corners of D will be very inefficient for the isoperimetric ratio h∗.
Thus, an ideal hyperbolic triangle T has h∗(T ) = ∞, since the sides
are infinitely long, and if we denote by Dn the regular hyperbolic n-gon
with angles equal to 2π/3, we have

h∗(Dn) → arccosh(5/3)
(π/3)

= (3/π) log(3) ∼ 1.049 · · · > 1
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as n → ∞. In particular, if we divide S into plaques Pi by placing
points {xi} on S and setting

Pi = {x ∈ S : dist(x, xi) < dist(x, xj), j �= i},
as we did in the graph-theoretic case, we would not expect in general
that h∗(Pi) is close to 1.

We will consider the following method for circumventing this prob-
lem: for each number v and integer k such that kv ≤ vol(S), we consider
the problem of choosing k disjoint domains Di in S such that for each
i, vol(Di) = v, and so that the value of

∑
i(length(∂Di)) is minimized.

When v is small, this infimum is realized by k disjoint balls of the
same radius. When kv = vol(S), this infimum is realized by Di which
are polygonal regions, whose sides are arcs of constant mean curvature,
such that precisely three such polygonal regions meet at a vertex [5].
When kv is slightly smaller than vol(S), the regions Di have boundaries
which have piecewise constant curvature, and the set S\ ∪i Di consists
of triangular regions whose boundaries are constant curvature arcs, the
curvature being the value of h∗(Di). These are the “wet soap bubbles”
of [5].

We now make the assumption that the injectivity radius of S is
large compared to vol(S)/k, and consider the problem of the value of
max(h∗(Di)) as v → vol(S)/k. When r is less than the injectivity radius
of S and

vol(S)
vol(B(2r))

> k,

we can place in S k disjoint balls of radius r, showing that for this value
of r, and hence for the value v∗ = vol(B(r∗)) for which h∗(Di) reaches
its minimum, we have that h∗(Di) < 1 + ε.

We further make the assumption that for this value of v∗, the set
S\ ∪i (Di) consists only of triangular regions.

Theorem 5.1. With these assumptions, we have that

h(S) ≤ (1/2)[1 + ε(inj(S))].

Proof. We consider the following procedure for dividing S into two
pieces A and B: first, we randomly assign each Di to one of the two
sets A and B. We then have to decide where to place the regions
complementary to ∪i(Di). If T is such a region, we look at the three
regions Di bounding T . If the majority of the Di bounding T is sent to
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A, then we send T to A as well, and similarly if the majority of the Di

are sent to B.
We now consider the problem of estimating the isoperimetric con-

stant h∗(A). For this, we assume that k is large.
By the Law of Large Numbers, it is clear that approximately half

the volume of ∪i(Di) is sent to A. Similarly, for each component T of
S\∪i (Di), half the time T is sent to A and half the time to B. So with
high probability the value of vol(A) is close to (1/2)vol(S).

D

D D1 2

3

a 1

a
2 a

3

Figure 1: A triangular domain bounded by 3 regions.

We now consider the length of the boundary ∂(A) of A. It is clear
that the boundary of A is contained in the union of the boundaries of
the Di’s. Furthermore, the boundary of each Di consists of arcs a of
two types (see Figure 1). Either:

(i) a is the common boundary of two Di’s,

or

(ii) a is the boundary of a triangular region T .
In Case (i), a appears in the boundary of A if and only if one of the

Di’s for which it is the common boundary is sent to A while the other
is sent to B. This happens with probability 1/2.

In Case (ii), a occurs in ∂A if and only if, of the three regions Di

bounding T , the one containing a is sent to one set, and the other two
are sent to the other set. This occurs with probability 1/4.
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Since in Case (i), a already appears twice, the expected contribution
of length(a) to length(∂A) is 1/4 its contribution to

∑
i length(Di). So

in both Cases (i) and (ii), the expected contribution of a boundary piece
a to length(∂A) is 1/4 its contribution to

∑
i length(Di).

It follows that with high probability, we have

h∗(A) ∼ (1/4)
∑

i length(Di)
(1/2)vol(S)

≤ (1/2)
∑

i length(Di)∑
i vol(Di)

≤ (1/2)max(h∗(Di)) ≤ (1/2)(1 + ε).

This concludes the proof of the theorem.
We remark that we get a weaker bound if we assume that comple-

mentary regions may be more complicated than triangles. If we assume
that each complementary region has at most m sides, the same argu-
ment gives the estimate

h∗(A) ≤ 1−
(

2l
l

)(
1
22l

)
,

for m equal to either 2l or 2l + 1.
Note that this expression tends to 1 as l → ∞.

6. Modular surfaces

Let Γ denote the group PSL(2,Z), and Γk the k-th congruence sub-
group

Γk =
{(

a b
c d

)
∈ Γ :

(
a b
c d

)
≡ ±

(
1 0
0 1

)
(mod k)

}
.

Denote by Sk the modular surface

Sk = H
2/Γk.

Sk is a Riemann surface of finite area.

According to a theorem of Selberg, we have

Theorem 6.1 ([20]). λ1(Sk) ≥ 3/16.
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Selberg further conjectured that λ1(Sk) ≥ 1/4 = λ0(H2). See [16]
for improvements on the 3/16 bound.

In view of the results of §5, the natural analogue of Selberg’s con-
jecture would be that h(Sk) ≥ 1/2.

In [7], we showed that for all values of k, one had the upper bound

h(Sk) ≤ .52455 . . .

and indeed for small values of k, h(Sk) drops below 1/2.
In this section, we apply our probabilistic techniques to a variation

of the argument of [7] to show:

Theorem 6.2. There exists a constant C < 1/2 such that

lim sup
k→∞

h(Sk) < C.

We begin the proof in a manner similar to that in [7]. We pick the
fundamental domain F for Γ shown in Figure 2. We then tile Sk by
copies of F , so that at each cusp, k copies of F meet to form a plaque
Pk, which may be thought of as a regular hyperbolic k-gon with all
angles equal to 2π/3, and a cusp at the center.

As a preliminary step, we consider dividing Sk into two sets A and
B which are a union of plaques. In [7], we considered a specific way of
doing this based on quadratic residues, but now we will simply choose
this division randomly.

Denoting by h the isoperimetric ratio

h =
length(∂A)
area(A)

,

we may readily compute the expected value of h as follows: For a given
copy of F , the probability of its inclusion in A is 1/2. If we denote by σ
one of the two finite geodesic segments in the boundary of F , it will be
included in the boundary of A if and only if one of the two copies of F
lies in A while the other lies in B. This happens with probability 1/2.

Furthermore, each copy of F contributes two copies of σ, while one
copy of σ is contributed by two copies of F . So

E(h) =
length(σ)
area(F )

,(2)

which gives as upper estimate for h(Sk) slightly larger than the estimate
of [7].
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Figure 2: The fundamental domain F .

To improve this estimate, we modify the border of A in the following
way: for each copy of the vertex of F , if two copies of σ meet at v, we
can replace them by the geodesic joining their endpoints. See Figure 3
for this argument.

This will change the area of A, since the geodesic cuts off a different
piece of the fundamental domain than the two segments, but since half
the time this decreases the area of A and half the time it increases the
area of A, this does not change the expected value of area(A).

On the other hand, the expected value of ∂A is lowered by replacing
the length of σ by half the length of the geodesic joining i and i + 1,
which has length arccosh(3/2). Denoting by h′ the isoperimetric ratio
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A

BB

Figure 3: Replacing two geodesic segments by a geodesic.

corresponding to this division, we may modify Equation (2) to obtain

E(h′) =
(1/2)arccosh(3/2)

area(F )

=
3arccosh(3/2)

2π
∼ 0.4595 .

This proves Theorem 6.2 with a value of C of 3arccosh(3/2)
2π ∼ 0.4595.

We may improve this estimate still further by taking into account
that when a section of the boundary of A consists of n geodesic pieces of
length arccosh(3/2) isometric to the n geodesic arcs (i, i+1), (i+1, i+2),
. . . , (i+(n−1), i+n), we may replace it by a geodesic piece joining the
two extreme endpoints. When this happens, we may replace the term
(1/2)arccosh(3/2) by the term (1/2n)arccosh(1 + n2/2).

We carry out this argument for the case n = 2, see Figure 4 for an
illustration. In this case, we need only take into account whether the
four cusps nearest the geodesic piece are sent to A or B. We thus obtain
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A

B B B

Figure 4: Replacing two geodesic segments of length arccosh(3/2) by
one of length arccosh(3).

an estimate for C of

C <
3
8π

[arccosh(3) + 2arccosh(3/2)] ∼ 0.4402.

7. Ramanujan surfaces

We begin this section with a construction taken from [9], which in
turn is a generalization of the construction of [8].

If Γ is a k-regular graph, an orientation O on Γ is an assignment,
for each vertex v of Γ, of a cyclic ordering of the edges emanating from
v. To each pair (Γ,O), we may assign a Riemann surface SO(Γ,O) as
follows: to each vertex of Γ, we associate a regular ideal k-gon, with
a geodesic drawn from the center of the k-gon to the midpoint of each
side. We identify these geodesics with the edges emanating from each
vertex, so that the natural cyclic ordering on the geodesics agrees with
the orientation of the graph at the vertex. We then glue two sides
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together so that the midpoints are identified if they correspond to the
same edge of the graph (from different vertices).

We denote by SC(Γ,O) the conformal compactification of SO(Γ,O).
We will apply this construction to a family of graphsXp.q considered

by Lubotsky, Phillips, and Sarnak [15], which they call the Ramanujan
graphs. These graphs depend on two distinct prime numbers p and q.
They are (p+ 1)-regular graphs which are homogeneous graphs for the
group G = Gp,q, which is either PSL(2,Z/q) or PGL(2,Z/q), depending
on quadratic residue properties of p and q.

In order to apply the construction of [9], we need to choose an ori-
entation O on Xp,q. We do this by picking a cyclic ordering at one
vertex and translating it over the entire graph by homogeneity. When
p = 2, so that Xp,q is 3-regular, the choice of orientation does not mat-
ter, but for p > 2, different choices will give rise to different surfaces.
We will denote these surfaces by Sp,q,O

O and Sp,q,C
O , and refer to them as

Ramanujan surfaces.
When it does not matter whether we consider the open surface or

the closed one, we will suppress the C or O. For instance, it follows from
[6] that the Cheeger constants of Sp.q,O

O and Sp,q,C
O will be close for q

sufficiently large (depending on p). We will also suppres the orientation
O when p = 2.

As an example, we consider the graph X2,3. When given the homo-
geneous orientation, it looks like the picture in Figure 5 below, where
the orientation is the natural one induced from the plane.

Figure 5: The Ramanujan graph X2,3.
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The reader is invited to compare this with the illustration given in
[18].

It is clear that S2,3,C is the Riemann sphere. In general, Sp,q,C
O

is a surface whose Euler characteristic will be given below. It will be
negative except for a few exceptional values of p and q.

The goal of this section is the following:

Theorem 7.1. There exists a constant C < 1/2 such that, for all
p, for q sufficiently large (depending on p), and for all homogeneous O,
we have

h(Sp,q
O ) < C.

We will find a value of C of .467177 . . . .

Our proof will work equally well for surfaces built from k-regular
graphs with orientation satisfying certain regularity conditions which
will be met for the Ramanujan graphs with a homogeneous orientation.
Therefore, we will set k = p + 1, and consider the case of k-regular
graphs, k arbitrary.

We will need the following simple facts about the surfaces Sp,q
O ; first

of all, the cusps of the surface are obtained by gluing together copies of
the fundamental domain Hk = Hp+1, shown in Figure 6 below, which
is the fundamental domain for the group Hk generated by

A =
(

1 2 cos(π/k)
0 1

)
and B =

(
0 −1
1 0

)
.

2 π
k

π22cos(       /k)

Figure 6: The fundamental domain Hk.
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Note that when k = 3, we obtain the fundamental domain for
PSL(2,Z), while as k → ∞, the length 2 cos(π/k) of the horocycle
tends to 2.

We now claim that there are integers a1, . . . , ak, some of which may
agree, such that each cusp of Sp,q,O

O is formed by aj copies of the funda-
mental domain for some j, and so that at each vertex, there is one cusp
formed from each aj which meets at that vertex. To see that, we recall
that since the graph Xp,q is the Cayley graph of the group Gp,q, each
edge is labeled by elements gi of the generators of the group. Passing
along two edges in succession in the orientation corresponds to multi-
plying g−1

i and gi+1. If g−1
i = gi+1, then the length of the path going

around the cusp will be the order of gi in Gp,q. Otherwise, the length
of the path around the cusp will be the order of 2gi+1g

−1
i .

It follows that each ai is at most twice the order of an element of
Gp,q, that is, ai must divide one of the numbers 2q, 2(q− 1) or 2(q+1).
Furthermore, it follows from results of [15] that the girth ofXp,q → ∞ as
q → ∞ (depending on p), so that the ai’s will also tend to infinity as q →
∞ (depending on p). Furthermore, the number of cusps corresponding
to ai will be |Gp,q|/ai, which will be at least (q)(q−1)

4 .

In the case of the graph X2,3, we see that a1 = 4 while a2 = a3 = 6.
Note that the Euler characteristic of Sp,q,C

O is given by

χ(Sp,q,C
O ) = |Gp,q|

[
p+1∑
i=1

1
ai

− p− 1
2

]
,

When k = 3, we may repeat the argument of Section 6 without
change, applying the Law of Large Numbers separately to the groups of
cusps of type ai for i = 1, 2, and 3, to arrive at the same upper bound
for h found there.

We now have to consider the cases k > 3. Here, we are helped by the
fact that the horocycles are longer (so that replacing them by geodesics
gives greater savings), but are hampered by the fact that the domains
outside the horocycles are bounded by more than three sides, and are
in fact k-sided. We must balance these two tendencies in a way that
will produce a uniform upper bound for h.

Let C(k) denote the upper bound for h that we get for each k.
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We first record some simple facts which we will need. The area of
Hk is given by

area(Hk) = π

(
k − 2
k

)
.

If z1 and z2 are two points in the upper half-plane H, then the length
dist(z1, z2) of the geodesic joining them is given by

dist(z1, z2) = arccosh
(
1 +

||z2 − z1||2
2Im(z1)Im(z2)

)
,

where ||z2 − z1|| denotes the Euclidean distance.
We now consider the linear fractional transformation

C = AB =
(

2 cos(π/k) −1
1 0

)
which is rotation through angle 2π/k about the vertex, and define the
functions

aj(k) = dist(i, Cj(i)).

aj(k) is the length of the geodesic which spans the endpoints of j horo-
cycles corresponding to j copies of Hk coming together at a vertex.

We have the following formulas for low values of j:

Lemma 7.1. aj(k) is given by the following formulas:

(1) a1(k) = arccosh
(
1 + 2 cos2(π/k)

)
.

(2) a2(k) = arccosh
(
1 + 8 cos4(π/k)

)
.

(3) a3(k) = arccosh
(
1 + 2 cos2(π/k)[4 cos2(π/k)− 1]2

)
.

(4) a4(k) = arccosh
(
1 + 32cos4(π/k)[2 cos2(π/k)− 1]2

)
.

(5) a5(k) = arccosh
(
1 + 2 cos2(π/k)[16 cos4(π/k)

−12 cos2(π/k) + 1]2
)
.

(6) For all j, as k → ∞, aj(k) → arccosh(1 + 2j2).
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Proof. This follows from the computations

C(i) = 2 cos(π/k) + 1, C2(i) =
8 cos3(π/k) + i

4 cos2(π/k) + 1
,

C−1(i) =
2 cos(pi/k) + i

4 cos2(π/k) + 1
,

C3(i) =
32 cos5(π/k)− 16 cos3(π/k) + 2 cos(π/k) + i

16 cos4(π/k)− 4 cos2(π/k) + 1
,

C−2(i) =
8 cos3(π/k) + i

16 cos4(π/k)− 4 cos2(π/k) + 1

and the distance formula. q.e.d.

Using these facts, we may now show:

Lemma 7.2. For k = 4, 5, 6, 7, and 8, we have:

(a) C(4) ≤ .454037001 . . . .

(b) C(5) ≤ .438076 . . . .

(c) C(6) ≤ .439071 . . . .

(d) C(7) ≤ .429074 . . . .

(e) C(8) ≤ .403043 . . . .

We first consider the case k = 4, the other cases being similar.
We consider the contributions to the boundary length and area coming
from each vertex. For the area term, we have four copies of H4 coming
together at the vertex, each of area π/2, and expect half of them to
contribute to the area term. Hence the contribution to the area at each
vertex is π.

The contribution of the boundary term is more involved. With prob-
ability 1/8, all copies of H4 will go to the same set, so there is no bound-
ary. With probability 4/8 = 1/2, one copy will go to one set and the
remaining three copies will go to the other set, giving a contribution of
(1/2)a1 to the boundary. Enumerating the remaining possibilities, we
see that the expected contribution to the boundary is

(1/8) · 0 + (4/8) · α1(4) + (1/8) · 2α1(4) + (1/4) · α2(4)
= (3/4)α1(4) + (1/4)α2(4)
= (3/4)arccosh(3) + (1/4)arccosh(3)
= 1.42871 . . . ,
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and dividing by π gives our estimate for C(4).

In general, the contribution to the area at a vertex will be π(k−2
2 ), so

the problem will be in calculating the contribution b(k) to the boundary.
Counting the possibilities as above gives

b(5) = (5/16) [3α1(5) + α2(5)] .

b(6) = (1/32) [33α1(6) + 12α2(6) + 3α3(6)] .

b(7) = (7/64) [9α1(7) + 3α2(7) + α3(7)] .

b(8) = (1/32) [37α1(8) + 16α2(8) + 5α3(8) + α4(8)] .

Plugging these formulas into a calculator then gives the lemma.

We clearly need a different idea for large k. We will adopt the
following: given a copy of Hk, we calculate the probability that it is
part of a group of j adjoining fundamental domains, each of which is
sent to the same set. If in addition this copy belongs to the minority,
then the contribution to the boundary will be

1
2

[
aj(k)
j

]
.

This is clearly an overestimate, since if a copy is surrounded by a large
number of domains going to the same set, this increases the probability
that it belongs to the majority. But this effect is small when k is large.

We now claim:

Lemma 7.3. The function aj(k)
j is a decreasing function of j for

j ≤ k.

Proof. Let Dθ be a rotation through angle 2θ about some fixed
point. For instance, we may take

Dθ(z) =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
,

and let dz1 be the function of θ given by

dz1(θ) = dist(z1, Dθ(z1)).

Then
dz1(θ) = arccosh(1 + (const) sin2(θ)),
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where (const) depends only on the distance of z1 to the fixed point.
This can most easily be verified by taking Dθ to be the rotation

about 0 in the disk, and using the analogue of the distance formula for
the disk.

The assertion of the lemma now follows from the fact that for θ ≤
π/2,

dz1(θ)
θ

is a decreasing function of θ,

which in turn can be verified by calculus. q.e.d.

We may calculate the probability Pl of a given copy of Hk to be part
of a block of exactly l copies which are sent to the same set by

Pl =
l

2l+1
,

provided l ≤ k − 2. Using Lemma 7.3, we see that for any m ≤ k − 2,
the expected contribution at a given copy of Hk is bounded above by

1
2

[(
m−1∑
l=1

Pl
al

l

)
+

(
1−

m−1∑
l=1

Pl

)(am

m

)]
.

Applying this to m = 5, we have the estimate

C(k) ≤ 1
π(1− 2/k)

[
1
4
a1(k) +

2
8
a2(k)
2

+
3
16
a3(k)
3

+
4
32
a4(k)
4

+
3
16
a5(k)
5

]
.

In the limit when k → ∞, we get that this converges to

1
π

[
arccosh(3)

4
+
arccosh(9)

8
+
arccosh(19)

16

+
arccosh(33)

32
+
3arccosh(51)

80

]
= .404434 . . . .

Furthermore, this function is decreasing in k for k > 8, and is always
below .467177 after k = 8.

This completes the proof of the theorem. q.e.d.
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